38 research outputs found

    Joint analysis of transcriptional and post- transcriptional brain tumor data: searching for emergent properties of cellular systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in biotechnology offer a fast growing variety of high-throughput data for screening molecular activities of genomic, transcriptional, post-transcriptional and translational observations. However, to date, most computational and algorithmic efforts have been directed at mining data from each of these molecular <it>levels </it>(genomic, transcriptional, etc.) separately. In view of the rapid advances in technology (new generation sequencing, high-throughput proteomics) it is important to address the problem of analyzing these data as a whole, i.e. preserving the emergent properties that appear in the cellular system when all molecular levels are interacting. We analyzed one of the (currently) few datasets that provide both transcriptional and post-transcriptional data of the same samples to investigate the possibility to extract more information, using a joint analysis approach.</p> <p>Results</p> <p>We use Factor Analysis coupled with pre-established knowledge as a theoretical base to achieve this goal. Our intention is to identify structures that contain information from both mRNAs and miRNAs, and that can explain the complexity of the data. Despite the small sample available, we can show that this approach permits identification of meaningful structures, in particular two polycistronic miRNA genes related to transcriptional activity and likely to be relevant in the discrimination between gliosarcomas and other brain tumors.</p> <p>Conclusions</p> <p>This suggests the need to develop methodologies to simultaneously mine information from different levels of biological organization, rather than linking separate analyses performed in parallel.</p

    Common integration sites of published datasets identified using a graph-based framework

    Get PDF
    With next-generation sequencing, the genomic data available for the characterization of integration sites (IS) has dramatically increased. At present, in a single experiment, several thousand viral integration genome targets can be investigated to define genomic hot spots. In a previous article, we renovated a formal CIS analysis based on a rigid fixed window demarcation into a more stretchy definition grounded on graphs. Here, we present a selection of supporting data related to the graph-based framework (GBF) from our previous article, in which a collection of common integration sites (CIS) were identified on six published datasets. In this work, we will focus on two datasets, ISRTCGD and ISHIV, which have been previously discussed. Moreover, we show in more detail the workflow design that originates the datasets

    Integrase-deficient lentiviral vectors mediate efficient gene transfer to human vascular smooth muscle cells with minimal genotoxic risk

    Get PDF
    We have previously shown that injury-induced neointima formation was rescued by adenoviral-Nogo-B gene delivery. Integrase-competent lentiviral vectors (ICLV) are efficient at gene delivery to vascular cells but present a risk of insertional mutagenesis. Conversely, integrase-deficient lentiviral vectors (IDLV) offer additional benefits through reduced mutagenesis risk, but this has not been evaluated in the context of vascular gene transfer. Here, we have investigated the performance and genetic safety of both counterparts in primary human vascular smooth muscle cells (VSMC) and compared gene transfer efficiency and assessed the genotoxic potential of ICLVs and IDLVs based on their integration frequency and insertional profile in the human genome. Expression of enhanced green fluorescent protein (eGFP) mediated by IDLVs (IDLV-eGFP) demonstrated efficient transgene expression in VSMCs. IDLV gene transfer of Nogo-B mediated efficient overexpression of Nogo-B in VSMCs, leading to phenotypic effects on VSMC migration and proliferation, similar to its ICLV version and unlike its eGFP control and uninfected VSMCs. Large-scale integration site analyses in VSMCs indicated that IDLV-mediated gene transfer gave rise to a very low frequency of genomic integration compared to ICLVs, revealing a close-to-random genomic distribution in VSMCs. This study demonstrates for the first time the potential of IDLVs for safe and efficient vascular gene transfer

    Generation of lentivirus-induced dendritic cells under GMP-compliant conditions for adaptive immune reconstitution against cytomegalovirus after stem cell transplantation

    Get PDF
    Figure S1. Feasibility of cryopreservation. (A) Tricistronic IDLV encoding for hGM-CSF, hIFN-α and CMV-pp65 protein used to generate SmyleDCpp65. (B) Scheme of SmyleDCpp65 generation. Monocytes were isolated by MACS selection, pre-conditioned with cytokines for 8 h, and transduced with IDLV-G2α2pp65 for 16 h. After transduction, cells were harvested and cryopreserved at 2x106 cells/mL/vial. Cells were analyzed immediately after thaw (AT) or cultured in medium without exogenous cytokines for 7 days. (C) Viability (7AADneg) and identity (CD14 + expression level) of cell product (AT). (D) Total IDLV copy numbers detected by RT-q-PCR in the transduced cell groups AT and after 7 days in culture. (E) pp65 expression in SmyleDCpp65 (CD14neg, CD11cbright) after 7 days of in vitro culture. (F) Viability, down regulation of monocyte marker (CD14), identity (CD11cbright and HLA-DR) and functional markers (CD86 and CD80) expressed in SmyleDCpp65 7 days after in vitro culture

    HIV- 1 lentivirus tethering to the genome is associated with transcription factor binding sites found in genes that favour virus survival

    Get PDF
    Lentiviral vectors (LV) are attractive for permanent and effective gene therapy. However, integration into the host genome can cause insertional mutagenesis highlighting the importance of understanding of LV integration. Insertion site (IS) tethering is believed to involve cellular proteins such as PSIP1/LEDGF/p75, which binds to the virus pre-integration complexes (PICs) helping to target the virus genome. Transcription factors (TF) that bind both the vector LTR and host genome are also suspected influential to this. To determine the role of TF in the tethering process, we mapped predicted transcription factor binding sites (pTFBS) near to IS chosen by HIV-1 LV using a narrow 20 bp window in infected human induced pluripotent stem cells (iPSCs) and their hepatocyte-like cell (HLC) derivatives. We then aligned the pTFBS with these sequences found in the LTRs of native and self-inactivated LTRs. We found significant enrichment of these sequences for pTFBS essential to HIV-1 life cycle and virus survival. These same sites also appear in HIV-1 patient IS and in mice infected with HIV-1 based LV. This in silco data analysis suggests pTFBS present in the virus LTR and IS sites selected by HIV-1 LV are important to virus survival and propagation

    Common clonal origin of conventional T cells and induced regulatory T cells in breast cancer patients

    Get PDF
    Regulatory CD4+ T cells (Treg) prevent tumor clearance by conventional T cells (Tconv) comprising a major obstacle of cancer immune-surveillance. Hitherto, the mechanisms of Treg repertoire formation in human cancers remain largely unclear. Here, we analyze Treg clonal origin in breast cancer patients using T-Cell Receptor and single-cell transcriptome sequencing. While Treg in peripheral blood and breast tumors are clonally distinct, Tconv clones, including tumor-antigen reactive effectors (Teff), are detected in both compartments. Tumor-infiltrating CD4+ cells accumulate into distinct transcriptome clusters, including early activated Tconv, uncommitted Teff, Th1 Teff, suppressive Treg and pro-tumorigenic Treg. Trajectory analysis suggests early activated Tconv differentiation either into Th1 Teff or into suppressive and pro-tumorigenic Treg. Importantly, Tconv, activated Tconv and Treg share highly-expanded clones contributing up to 65% of intratumoral Treg. Here we show that Treg in human breast cancer may considerably stem from antigen-experienced Tconv converting into secondary induced Treg through intratumoral activation

    COVID-19 Severity in Multiple Sclerosis: Putting Data Into Context

    Get PDF
    Background and objectives: It is unclear how multiple sclerosis (MS) affects the severity of COVID-19. The aim of this study is to compare COVID-19-related outcomes collected in an Italian cohort of patients with MS with the outcomes expected in the age- and sex-matched Italian population. Methods: Hospitalization, intensive care unit (ICU) admission, and death after COVID-19 diagnosis of 1,362 patients with MS were compared with the age- and sex-matched Italian population in a retrospective observational case-cohort study with population-based control. The observed vs the expected events were compared in the whole MS cohort and in different subgroups (higher risk: Expanded Disability Status Scale [EDSS] score &gt; 3 or at least 1 comorbidity, lower risk: EDSS score ≤ 3 and no comorbidities) by the χ2 test, and the risk excess was quantified by risk ratios (RRs). Results: The risk of severe events was about twice the risk in the age- and sex-matched Italian population: RR = 2.12 for hospitalization (p &lt; 0.001), RR = 2.19 for ICU admission (p &lt; 0.001), and RR = 2.43 for death (p &lt; 0.001). The excess of risk was confined to the higher-risk group (n = 553). In lower-risk patients (n = 809), the rate of events was close to that of the Italian age- and sex-matched population (RR = 1.12 for hospitalization, RR = 1.52 for ICU admission, and RR = 1.19 for death). In the lower-risk group, an increased hospitalization risk was detected in patients on anti-CD20 (RR = 3.03, p = 0.005), whereas a decrease was detected in patients on interferon (0 observed vs 4 expected events, p = 0.04). Discussion: Overall, the MS cohort had a risk of severe events that is twice the risk than the age- and sex-matched Italian population. This excess of risk is mainly explained by the EDSS score and comorbidities, whereas a residual increase of hospitalization risk was observed in patients on anti-CD20 therapies and a decrease in people on interferon

    SARS-CoV-2 serology after COVID-19 in multiple sclerosis: An international cohort study

    Get PDF

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR&nbsp;=&nbsp;2.05, 95%CI&nbsp;=&nbsp;1.39–3.02, p&nbsp;&lt;&nbsp;0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR&nbsp;=&nbsp;0.42, 95%CI&nbsp;=&nbsp;0.18–0.99, p&nbsp;=&nbsp;0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon
    corecore